Current status of drug coated balloon treatment in the SFA: What do the 3 year outcomes from the IN.PACT SFA RCT tell us

John Laird, MD
University of California Davis Health System
Sacramento, California, USA
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Consulting Fees/Honoraria

Company

- WL Gore, Medtronic
- Abbott Vascular, Bard Peripheral Vascular, WL Gore, Boston Scientific, Medtronic
Background

- Literature is rich with longer-term (5-year) follow-up for femoropopliteal artery disease treatment via surgical intervention$^{1-3}$
- Contemporary endovascular studies are pursuing longer-term follow-up, though few reports exist$^{4-9}$
- Early results with Drug-Coated Balloons (DCBs) are promising, but we need to demonstrate effectiveness through the 3-5 year window

DCBs available worldwide for the SFA

Limited level 1 evidence available

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>DCB</th>
<th>PTX Dose (µg/mm²)</th>
<th>Excipient</th>
<th>Available in EU? US? Other Regions?</th>
<th>With 12m multicenter RCT data?</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARD</td>
<td>Lutonix (prev. MOXY)</td>
<td>2.0</td>
<td>Polysorbate + Sorbitol</td>
<td>EU + US + Other Regions</td>
<td>Yes</td>
</tr>
<tr>
<td>Medtronic</td>
<td>IN.PACT (Admiral, Pacific)</td>
<td>3.5</td>
<td>Urea</td>
<td>EU + US + Other Regions</td>
<td>Yes</td>
</tr>
<tr>
<td>Spectranetics</td>
<td>STELLAREX</td>
<td>2.0</td>
<td>PEG</td>
<td>EU + Other Regions (planning US + other)</td>
<td>Yes</td>
</tr>
<tr>
<td>Boston Scientific</td>
<td>Ranger</td>
<td>2.0</td>
<td>Acetyl Tributyl Citrate</td>
<td>EU + Other Regions (planning US + other)</td>
<td>6-month data</td>
</tr>
<tr>
<td>Acotec Scientific</td>
<td>Orchid</td>
<td>3.0</td>
<td>Magnesium Stearate</td>
<td>China</td>
<td>Yes</td>
</tr>
<tr>
<td>BIOTRONIK</td>
<td>Passeo-18 Lux</td>
<td>3.0</td>
<td>BTHC</td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>Vascular</td>
<td>Luminor 35</td>
<td>3.0</td>
<td>Not disclosed</td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>COOK</td>
<td>Advance PTX</td>
<td>3.0</td>
<td>none</td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>Aachen Resonance</td>
<td>Elutax SV</td>
<td>2.2</td>
<td>none</td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>BIOSENSORS (prev. EuroCor)</td>
<td>BioPath</td>
<td>3.0</td>
<td>Shellac</td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>BIOSENSORS (prev. FREEWAY)</td>
<td></td>
<td></td>
<td></td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>CARDIONOVUM</td>
<td>Legflow</td>
<td>3.0</td>
<td>Shellac</td>
<td>EU</td>
<td>-</td>
</tr>
<tr>
<td>B. Braun</td>
<td>SeQuent Please OTW</td>
<td>3.0</td>
<td>Resveratrol</td>
<td>EU</td>
<td>-</td>
</tr>
</tbody>
</table>
DCB US Pivotal + EU Multicenter RCTs for the SFA
Primary Patency at 1 year

<table>
<thead>
<tr>
<th>Device</th>
<th>1 Year Patency</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutonix II</td>
<td>73.5%</td>
<td>Δ 16.7% P < 0.001</td>
</tr>
<tr>
<td>IN.PACT SFA</td>
<td>87.5%</td>
<td>Δ 31.7% P < 0.001</td>
</tr>
<tr>
<td>Stellarex-EU</td>
<td>89.0%</td>
<td>Δ 24.0% P < 0.001</td>
</tr>
<tr>
<td>Stellarex-Pivotal</td>
<td>82.3%</td>
<td>Δ 11.4% P = NR</td>
</tr>
<tr>
<td>Ranger</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

4. Lyden S, presented at TCT DC 2016. PSVR ≤ 2.5 and freedom from CD-TLR. Not yet published.
DCB US Pivotal + EU Multicenter RCTs for the SFA
Freedom from TLR at 1 year

2. Tepe G, et al. Circ 131:495-502 (2015). Reintervention at target lesion due to symptoms or drop of ABI of ≥20% or >0.15 compared to baseline.
3. Brodmann M, presented at AMP Chicago 2016. Reintervention at target lesion due to an increase in RCC >1 category or deterioration in the ABI by >0.15 compared to baseline.
4. Lyden S, presented at TCT DC 2016. Reintervention at target lesion due to an increase in RCC >1 category or deterioration in the ABI by >0.15 compared to baseline.

[1] Lutonix II
[2] IN.PACT SFA
[3] Stellarex-EU
[4] Stellarex-Pivotal

N/A

DCB, 87.7% PTA, 83.2% Δ 4.5% P = NSS
DCB, 97.6% PTA, 79.4% Δ 18.2% P < 0.001
DCB, 94.8% PTA, 85.3% Δ 9.5% P = 0.010
DCB, 93.6% PTA, 87.3% Δ 6.3% P = NR
Ranger
Background: Zilver PTX 5-year Results
Largest Randomized SFA Endovascular Device Trial Reported

- In first year, most of the patency loss of both arms experienced
- By end of first year, patency loss begins stabilizing
- From 2-year to 5-year, patency loss relatively stable in both arms at 3-4% per year

<table>
<thead>
<tr>
<th>Δ Patency/yr</th>
<th>0 to 1-year</th>
<th>1- to 2-years</th>
<th>2-5-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal PTA + BMS</td>
<td>-32.6%</td>
<td>-11.2%</td>
<td>-4.3%</td>
</tr>
<tr>
<td>Zilver PTX</td>
<td>-15.6%</td>
<td>-8.1%</td>
<td>-3.3%</td>
</tr>
</tbody>
</table>

2. Primary patency was defined as <50% stenosis from duplex ultrasonography (peak systolic velocity ratio <2.0) or from arteriography when available.
From smaller studies to meta-analyses, similar trends are reported across various endovascular therapies and surgical techniques.

Should we expect DCBs to be different?
THUNDER 5-year Results
Longest-running Prospectively, Randomized DCB Trial1,2

<table>
<thead>
<tr>
<th></th>
<th>PTA Arm</th>
<th>DCB Arm</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions (N)</td>
<td>54</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Lesion Length (cm)</td>
<td>7.4 ± 6.7</td>
<td>7.5 ± 6.2</td>
<td>0.73</td>
</tr>
<tr>
<td>CTO</td>
<td>26.0% (14/54)</td>
<td>27.0% (13/48)</td>
<td>1.00</td>
</tr>
<tr>
<td>Ca2+</td>
<td>52.0% (28/54)</td>
<td>50.0% (24/48)</td>
<td>1.00</td>
</tr>
<tr>
<td>Device</td>
<td>Any</td>
<td>Paccocath (now Medtronic)</td>
<td></td>
</tr>
</tbody>
</table>

Similar to previous reports of endovascular and surgical treatment, bulk of patency loss occurs in first year (PTA: 50.0%; DCB: 24.2%) with subsequent years exhibiting 1-2% patency loss.

What about larger, multi-center RCT results?
DCB US Pivotal + EU Multicenter RCTs for the SFA Primary Patency at 2 years

- **Lutonix II**
 - DCB, 58.6%
 - PTA, 53.0%
 - Δ 5.6%, P = 0.05

- **IN.PACT SFA**
 - DCB, 78.9%
 - PTA, 50.1%
 - Δ 28.8%, P < 0.001

- **Stellarex-EU**
- **Stellarex-Pivotal**
- **Ranger**

Expected later this year (2017)

A Closer Look at the LEVANT II 2-year Results

Prospectively Randomized Multicenter DCB Trial\(^1,2\)

<table>
<thead>
<tr>
<th></th>
<th>PTA Arm</th>
<th>DCB Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions (N)</td>
<td>160</td>
<td>316</td>
</tr>
<tr>
<td>Lesion Length (cm)</td>
<td>6.3 ± 4.0</td>
<td>6.3 ± 4.1</td>
</tr>
<tr>
<td>CTO</td>
<td>21.9% (35/160)</td>
<td>20.6% (65/316)</td>
</tr>
<tr>
<td>Severe Ca(^{2+})</td>
<td>8.1% (13/160)</td>
<td>10.4% (33/316)</td>
</tr>
<tr>
<td>Device</td>
<td>Any</td>
<td>Lutonix 035</td>
</tr>
<tr>
<td>1-Year 1° Patency (KM365d)(^3)</td>
<td>56.8%</td>
<td>73.5%</td>
</tr>
<tr>
<td>2-Year 1° Patency (KM730d)(^3)</td>
<td>53.0%</td>
<td>58.6%</td>
</tr>
</tbody>
</table>

1y Most of the patency loss of both arms experienced in first year
- PTA: 43.2% loss
- DCB: 26.5% loss

2y PTA stable second year while DCB continues higher rate of patency loss
- PTA: 3.8% loss
- DCB: 14.9% loss

Possible DCB trend of late catch-up to control PTA in 2-year follow-up.

2. LEVANT II 2-year results presented by Laurich C, SVS Chicago 2015.
3. Patency defined as PSVR ≤ 2.5 and freedom from TLR.
A Closer Look at the IN.PACT SFA Trial 2-year Results
Prospectively Randomized Multicenter DCB Trial

<table>
<thead>
<tr>
<th></th>
<th>PTA Arm</th>
<th>DCB Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesions (N)</td>
<td>111</td>
<td>220</td>
</tr>
<tr>
<td>Lesion Length (cm)</td>
<td>8.8 ± 5.1</td>
<td>8.9 ± 4.9</td>
</tr>
<tr>
<td>CTO</td>
<td>19.5% (22/113)</td>
<td>25.8% (57/221)</td>
</tr>
<tr>
<td>Severe Ca²⁺</td>
<td>6.2% (7/113)</td>
<td>8.1% (18/221)</td>
</tr>
<tr>
<td>Device</td>
<td>Any</td>
<td>IN.PACT Admiral</td>
</tr>
<tr>
<td>1-Year 1° Patency (KM360d)</td>
<td>55.8%</td>
<td>87.5%</td>
</tr>
<tr>
<td>2-Year 1° Patency (KM720d)</td>
<td>50.1%</td>
<td>78.9%</td>
</tr>
</tbody>
</table>

1. Most of the patency loss of both arms experienced in first year
 - PTA: 44.2% loss
 - DCB: 12.5% loss
2. PTA and DCB exhibit similar rates of patency loss
 - PTA: 5.7% loss
 - DCB: 8.6% loss

Comparable rates of patency loss into second year of follow-up.

2. Patency defined as Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR ≤2.4) or clinically-driven target lesion revascularization through 24 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment).
What do the 3 year outcomes from the IN.PACT SFA RCT tell us?
DCB US Pivotal + EU Multicenter RCTs for the SFA Primary Patency at 3 years

Primary Patency

![Graph showing primary patency comparison between DCB and PTA.](image)

- **DCB, 69.5%**
- **PTA, 45.1%**

\[\Delta 24.4\% \quad P < 0.001 \]

Expected late 2018
- Stellarex-EU
- Stellarex-Pivotal
- Ranger
- N/A

Expected early 2016
- Lutonix II
- IN.PACT SFA

\[\text{Freedom from core laboratory-assessed restenosis (duplex ultrasound PSVR \leq 2.4) and clinically-driven target lesion revascularization through 36 months (adjudicated by a Clinical Events Committee blinded to the assigned treatment)} \]

Number at risk represents the number of evaluable subjects at the beginning of the each 30-day window

IN.PACT SFA Trial

Effectiveness Outcomes through 3 Years [1]

<table>
<thead>
<tr>
<th></th>
<th>IN.PACT DCB (N=220)</th>
<th>PTA (N=111)</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically-driven TLR [2]</td>
<td>15.2% (30/197)</td>
<td>31.1% (32/103)</td>
<td>0.002</td>
</tr>
<tr>
<td>All TLR [3]</td>
<td>16.2% (32/197)</td>
<td>34.0% (35/103)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Time to First CD-TLR</td>
<td>542.9 ± 278.2</td>
<td>302.9 ± 213.0</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

2. Clinically-driven TLR adjudicated by an independent Clinical Event Committee, blinded to the assigned treatment based on any re-intervention at the target lesion due to symptoms or drop of ABI of ≥20% or >0.15 when compared to post-procedure baseline ABI
3. Any TLR includes clinically-driven and incidental or duplex driven TLR

† Unless otherwise indicated, all tests were for superiority using the Fisher’s exact test for binary variables and t-test for continuous variables.
IN.PACT SFA Trial
Safety Outcomes through 3 Years [1]

<table>
<thead>
<tr>
<th></th>
<th>IN.PACT DCB N=220</th>
<th>PTA N=111</th>
<th>P-value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device- or Procedure-related Death</td>
<td>0.0% (0/197)</td>
<td>0.0% (0/103)</td>
<td>N/A</td>
</tr>
<tr>
<td>Clinically-driven TVR</td>
<td>18.8% (37/197)</td>
<td>35.9% (37/103)</td>
<td>0.002</td>
</tr>
<tr>
<td>Target Limb Major Amputation</td>
<td>0.0% (0/197)</td>
<td>0.0% (0/103)</td>
<td>N/A</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>2.0% (4/197)</td>
<td>4.9% (5/103)</td>
<td>0.283</td>
</tr>
</tbody>
</table>

† P-values are based on Fisher’s exact test for superiority with significance level of 0.05
IN.PACT SFA Trial 3 Year Outcomes

Only independently-adjudicated, randomized, pivotal trial to demonstrate a superior treatment effect of DCB over PTA through 3 years

- Durable treatment effect of IN.PACT™ Admiral™ DCB over 3 years
 - Primary patency: $\Delta +24.4\%$ (p<0.001)
 - Freedom from CD-TLR: $\Delta +14.1\%$ (p<0.001)
 - Fewer interventions for patients (delayed first time to TLR)
 - Minimal late catch-up

- Continued safety of IN.PACT™ Admiral™ DCB
 - 0 device- or procedure-related deaths
 - 0 amputations
 - Lower thrombosis rate than PTA control (2.0% vs 4.9%; p=0.283)
Current status of drug coated balloon treatment in the SFA:
What do the 3 year outcomes from the IN.PACT SFA RCT tell us

John Laird, MD
University of California Davis Health System
Sacramento, California, USA