Early-Access Upper Extremity Grafts Offer No Benefit Over Standard Grafts in Hemodialysis Access

Samuel Steerman MD, John DelBianco BA, David Dexter MD, Sadaf Ahanchi MD, Sarah Ongstad MD, Obie Powell MD, Niraj Parikh MD, Emilia Krol MD, Jean Panneton MD

Division of Vascular Surgery
Eastern Virginia Medical School
Disclosures

• No financial disclosures
The Catheter Problem

- >350,000 patients on HD
- 80% of patients initiate HD with a catheter
- Change from Catheter to AV access shown to decrease mortality: RR: 3.43 -> 1.37

Source: US Renal Data System
A faster way to get the catheter out?

Standard AVG

• Require 2-3 weeks to mature (KDOQI)

Early-Access Graft (EAG)

☐ Per IFU - Cannulation-capable within 24 hours

Prospective multicenter study with a 1-year analysis of a new vascular graft used for early cannulation in patients undergoing hemodialysis

Marc H. Glickman, MD, Jason Burgess, MD, David Call, MD, Prabir Roy-Chaudhury, MD, PhD, and Harry Schanzer, MD, Norfolk, Va; Charlotte, NC; Greenville, SC; Cincinnati, Ohio, and New York, NY

Traditional versus Early-access Grafts for Hemodialysis Access: A Single-institution Comparative Study

THOMAS SCARRITT, B.A., CHRISTINE M. PARAGONE, PA-C, RONALD B. O’GORMAN, M.D., Ph.D., DIMITRIS X. KARYAZIS, M.D., CARL MALTESE, M.D., JACK W. ROSTAS III, M.D.
Objective

• To conduct a direct, real-world comparison of standard AVGs and early-access grafts in terms of:
 – Patency
 – Graft Complications
 – Catheter days
Study Design

• Retrospective review of AVGs placed from January 2011 to March 2012

• Excluded:
 – Lower extremity AVGs
 – HeRO grafts
 – Bioprostheses
122 ePTFE AVGs in 115 patients

- 78 standard AVGs
 - 22 Advanta
 - 21 Venaflo
 - 15 Propaten
 - 10 Gore Hybrid
 - 6 Carboflo
 - 4 Impra

- 44 EAGs
 - 23 Acuseal
 - 18 Flixene
 - 3 Vectra

- 5 patients received 2 grafts
- 2 patients had one of each graft type
- 1 patient received 3 grafts
Pre-operative Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Standard AVG N = 78</th>
<th>EAG N = 44</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (years)</td>
<td>65.3 ± 13.4</td>
<td>66.5 ± 15.9</td>
<td>.657</td>
</tr>
<tr>
<td>Male</td>
<td>41% (32)</td>
<td>43% (19)</td>
<td>.850</td>
</tr>
<tr>
<td>BMI</td>
<td>28.2 ± 8.1</td>
<td>26.7 ± 6.3</td>
<td>.292</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>78% (59)</td>
<td>82% (36)</td>
<td>.791</td>
</tr>
<tr>
<td>White</td>
<td>18% (14)</td>
<td>14% (6)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4% (3)</td>
<td>5% (2)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>60% (47)</td>
<td>55% (24)</td>
<td>.571</td>
</tr>
<tr>
<td>Hypertension</td>
<td>96% (75)</td>
<td>89% (39)</td>
<td>.135</td>
</tr>
<tr>
<td>Dialysis Access History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of prior AV access creation procedures</td>
<td>1.2 (0 – 5)</td>
<td>1.3 (0 – 3)</td>
<td>.482</td>
</tr>
<tr>
<td>Catheter in-place at surgery</td>
<td>80% (62)</td>
<td>77% (34)</td>
<td>.816</td>
</tr>
</tbody>
</table>
| | Standard AVG
N = 78 | EAG
N = 44 | P value |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 6mm | 65% (51) | 88% (37)
20 Acuseal
14 Flixene
3 Vectra | .009 |
| 4-7mm | 33% (26) | 10% (4)
4 Flixene | .004 |
| 8mm | 1% (1) | 2% (1)
1 Acuseal | 1 |
| 9-6mm | 1% (1) | 0 | 1 |
| **Location & Configuration** | | | |
| Upper arm straight | 47% (37) | 66% (29)
16 Acuseal
11 Flixene
2 Vectra | .06 |
| Upper arm loop | 33% (26) | 16% (7)
2 Acuseal
5 Flixene | .055 |
| Forearm loop | 18% (14) | 18% (8)
5 Acuseal
2 Flixene
1 Vectra | 1 |
| Forearm straight | 1% (1) | 0 | 1 |
Primary Patency

- Standard AVG: 33% (p = .096)
- EAG: 13%
Secondary Patency

![Secondary Patency Graph](image)

- Standard AVG
- EAG

p = .366
Catheter Days

Days to catheter removal

- Standard AVG: 61 days
- EAG: 44 days

p = 0.065
Complications

<table>
<thead>
<tr>
<th>Condition</th>
<th>Standard AVG</th>
<th>EAG</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>15</td>
<td>11</td>
<td>.598</td>
</tr>
<tr>
<td>Steal Syndrome</td>
<td>14</td>
<td>16</td>
<td>.795</td>
</tr>
<tr>
<td>Pseudoaneurysm</td>
<td>12</td>
<td>9</td>
<td>.768</td>
</tr>
</tbody>
</table>
Interventions Per Patient Year to Maintain Patency

- Standard AVG: 2.13
- EAG: 1.62

p = .651
Subset: New Catheters Avoidance

- Frequency of a peri-op tunneled catheter insertion per graft type

AVG Group: 40% (6/15) of standard AVG patients

EAG Group: 10% (1/10) of EAG patients

25 patients without a catheter

$p = .179$
Conclusion

• Standard AVGs and EAGs are shown to have similar rates of patency and complications

• Potential, but unrealized, advantages include:
 – Fewer catheter days
 – Avoidance of catheters in new start HD patients
Eastern Virginia Medical School
Division of Vascular Surgery

S. Sadaf Ahanchi, MD
Siddharth Bhende, MD
John O. Colonna, MD
Richard J. DeMasi, MD
Deepak Deshmukh, DO
David Dexter, MD
Todd W. Gensler, MD
Michael Landis, MD
Michael J. Marcinczyk, MD

Jean M. Panneton, MD
F. Noel Parent, MD
Animesh Rathore, MD
Manuela Schuksz, MD, PhD
Rasesh M. Shah, MD
Samuel Steereman, MD
Gordon K. Stokes, MD
Duncan Yoder, MD
Early-Access Upper Extremity Grafts Offer No Benefit Over Standard Grafts in Hemodialysis Access

Samuel Steerman MD, John DelBianco BA, David Dexter MD, Sadaf Ahanchi MD, Sarah Ongstad MD, Obie Powell MD, Niraj Parikh MD, Emilia Krol MD, Jean Panneton MD

Division of Vascular Surgery
Eastern Virginia Medical School