Techniques for the End Stage of Dialysis Access

William M. Lee, MD
Assistant Professor of Medicine
Keck School of Medicine
University of Southern California

LINC Leipzig
January 26, 2017
Disclosures

- Previously a paid consultant for CryoLife
Prevalence of ESRD in the US

Per million population

http://www.usrds.org/2010/slides/indiv/1v2index.html
Annual mortality rate of Dialysis Patients

Per 1,000 patient years at risk

http://www.usrds.org/2010/slides/indiv/1v2index.html
Failing dialysis access

- Thrombosis
- Infection
- Central venous stenosis
Treatment of central venous stenosis

- K-DOQI: angioplasty combined with stenting for elastic central venous stenoses or recurrent stenoses within a 3 month period\(^1\)
- Primary patency 12 – 29% at 12 months\(^2\)
- Cumulative patency 69 – 100%\(^3\)

Techniques for circumventing central stenoses

 Hemodialysis Reliable Outflow (HeRO) device
 Femoral vein arteriovenous fistulae
 Transhepatic and direct caval tunneled catheters
LA

- 74 y/o male, HTN, DM, ESRD
- Failed left radiocephalic AVF
- Failed left upper arm AVG
- History of bilateral upper extremity dialysis catheters
Central Venous Stenosis
Central Venous Stenosis
Post-angioplasty
Recanalized central venous occlusion
Hybrid dialysis catheter

- HeRO (Hemodialysis Reliable Outflow)
HeRO diagram
HeRO clinical outcomes

<table>
<thead>
<tr>
<th>Multi-Center Data</th>
<th>AVG Literature</th>
<th>Catheter Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteremia Rates (Infections/1,000 days)</td>
<td>0.11</td>
<td>2.30</td>
</tr>
<tr>
<td>Intervention Rates (Per patient year)</td>
<td>1.6 – 2.4</td>
<td>5.8</td>
</tr>
<tr>
<td>12 Month Secondary Patency Rates</td>
<td>65%</td>
<td>37%</td>
</tr>
<tr>
<td>Adequacy of Dialysis (mean Kt/V)</td>
<td>1.37 – 1.62</td>
<td>1.29 – 1.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Katzman¹</th>
<th>Gage²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 36)</td>
<td>(n = 164)</td>
</tr>
<tr>
<td>Bacteremia</td>
<td>0.70</td>
<td>0.14</td>
</tr>
<tr>
<td>Intervention rate</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>12 month primary patency</td>
<td>38.9%</td>
<td>48.8%</td>
</tr>
<tr>
<td>12 month secondary patency</td>
<td>72.2%</td>
<td>90.8%</td>
</tr>
</tbody>
</table>

GJ

- Spina bifida
- Paraplegia
- History of decubitus ulcers with lower extremity muscle flaps
- Atretic femoral veins
- Left sided SVC
- Multiple line infections and episodes of sepsis
Femoral Vein Transposition AVF

- Similar to single stage basilic vein transposition
- Elevation of femoral vein
- Tunnel femoral vein
- Anastomosis to SFA
Results of Femoral Vein Transposition

- 72 AVF
- Mean time from initiation of HD to femoral fistulae: 10 years
- 82% successful HD
- 1 year primary/secondary patency 91/45 %
Complications

- Minor complications 56%
 - Hematoma, wound healing, access complication, stenosis
- Major complications 18%
 - Arterial ischemia, amputation, high output cardiac failure, bleeding
Recalcitrant central venous occlusion

- Alternate approach for tunneled dialysis catheters
Keck Experience in Unconventional Dialysis Catheter Access

- Keck Hospital of USC, LAC + USC Medical Center
- Mean age 44
Results

- Total access site interval (duration of use)
 - Mean - 380 days
 - Range - 15-790 days
 - Median - 245 days

- Initial access site interval
 - Mean - 295 days
 - Range – 15-658 days
 - Median - 245 days
Unconventional Access

- Transhepatic and Translumbar central venous catheters are a useful tool for hemodialysis access when other options have been exhausted.

- Potential benefit as a bridge to transplantation or recanalization of central venous occlusion.
Techniques for the End Stage of Dialysis Access

William M. Lee, MD
Assistant Professor of Medicine
Keck School of Medicine
University of Southern California

LINC Leipzig
January 26, 2017