Current meta-analysis comparison between DCB and POBA in below-the-knee therapy

Jihad A. Mustapha, MD, FACC, FSCAI
Director of Cardiovascular Research
Metro Health Hospital
Wyoming, MI
Associate Clinical Professor of Medicine
Michigan State University College of Osteopathic Medicine
E. Lansing, MI
Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Affiliation/Financial Relationship</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulting Fees/Honoraria</td>
<td>Abbott Vascular</td>
</tr>
<tr>
<td></td>
<td>Bard Peripheral Vascular</td>
</tr>
<tr>
<td></td>
<td>Boston Scientific</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular Systems, Inc.</td>
</tr>
<tr>
<td></td>
<td>Cook Medical</td>
</tr>
<tr>
<td></td>
<td>Medtronic</td>
</tr>
<tr>
<td></td>
<td>Spectranetics</td>
</tr>
<tr>
<td></td>
<td>Terumo</td>
</tr>
</tbody>
</table>
Infrapopliteal or “Below the knee” Arterial Disease

- Risk factors include diabetes, chronic kidney disease, and advanced age (all on the rise)
- Progresses to critical limb ischemia (CLI)
- Disease may be multi-level
- Higher risk for amputation with shorter amputation-free survival
- Goal: Re-establish direct flow through at least one infrapopliteal artery to reduce pain and promote wound healing.

Notice, no mention of preventing Amp

Types Vascular Smooth Muscle cells (VSMC)

- The two ends of a spectrum of VSMC:
 1. Proliferative, synthetic VSMCs
 2. Quiescent, contractile VSMCs
 3. Intermediate phenotypes exist

 - Differentiation and proliferation of VSMCs are not mutually exclusive. Depending on the signals present in their local environment, contractile VSMCs can acquire distinct phenotypes with the ability to:
 - migrate
 - proliferate
 - promote ECM production
 - elicit inflammatory signals
 - and/or calcification
Types Vascular Smooth Muscle cells (VSMC)

• The phenotypic modulation of VSMCs is determined by the environmental signals:
 – mechanical forces
 – endocytosis of specific molecules
 – growth factors that influence expression of a panel of VSMC-specific genes
 – inflammatory cytokines
 – calcium-phosphate homeostasis
 – oxidized phospholipids, retinoic acid
 – involves multiple signaling pathways including MAPK kinases, Rho, Notch, BMP
 – and β-catenin signaling
<table>
<thead>
<tr>
<th>Location and Features</th>
<th>Associated Condition(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcific atherosclerosis</td>
<td>Intimal; ossification</td>
</tr>
<tr>
<td>Calcific medial vasculopathy (Mönckeberg’s medial calcific sclerosis)</td>
<td>Tunica media</td>
</tr>
<tr>
<td>Elastocalcinosis</td>
<td>Internal elastic lamina/interna External elastic Externa</td>
</tr>
<tr>
<td>Calcific uremic arteriolopathy</td>
<td>Microvessels; amorphous</td>
</tr>
</tbody>
</table>
Infrapopliteal Treatment Trials – Disappointing Results for 20 Years

- Distal Bypass
- POBA
- BMS
- DES (for mid and distal tibials)
- DCB
- Other

Bypass Graft

- Option for good surgical candidates
- Comorbidities, inadequate conduit, lack of good distal target limit eligibility for many CLI patients
- Index limb re-operation within 3 months, hospital re-admission, and > 3 month wound healing time have been reported in the 50% range
- High morbidity/mortality rates & cost

POBA

Meta-analysis (1990-2006):
- Limb salvage rate was high
- Primary and secondary patency were low
- PTA had inferior primary and secondary patency but comparable limb salvage to open surgical procedures

Meta-analysis estimates of primary patency (black line), secondary patency (gray line), limb salvage (red line).

Kaplan-Meier life-table analysis of outcomes after angioplasty for CLI. *Dashed line* – portion of plot where the SE is greater than 10%.

- Limb salvage rate was high
- Primary and secondary patency were low
- Purpose of treatment in this population is symptom relief rather than long-term patency
- Risk factor analysis showed hypertension, multiple segment lesions, more distal lesions, and TASC D lesions were predictors of worse long-term outcomes

BMS

- Good limb salvage rates
- 12-month freedom from TLR 54.3%
- Rate of AEs 63.3%, largely due to high rate of TLR

12-Month amputation-free survival and limb salvage curves.

DES

ACHILLES TRIAL

- SES group superior to PTA with freedom from death, TLR, bypass, amputation, and RC ≥4.
- 12 month vessel patency higher in SES vs. PTA (75% vs. 57.1%)

META-ANALYSIS

- DES reduces risk of TLR, restenosis and amputation compared to PTA or BMS
- DES had no significant difference on mortality or RC improvement at 1 year

DES

- DES trials limited to primarily focal lesions
- Stent deformation limits use in distal vessels

A: Overall distribution and rates of stent fractures and compressions in various infrapopliteal anatomical levels
B: Anatomical relationship of distal anterior tibial artery may render the vessel more prone to stent fatigue

DCB

Multiple randomized trials comparing DCB to POBA with varied results:

- **DEBATE-BTK**: DCB associated with significant reduction in binary restenosis, TLR and vessel occlusion at 12 months
- **DEBELLEUM**: DCB demonstrated reduction in restenosis at 6 months
- **IN.PACT DEEP**: DCB had comparable efficacy, increased major amputation rates.
- **BIOLUX**: DCB outcomes comparable to PTA

DCB

DEBATE BTK
- Binary restenosis 27% (DCB) vs. 74.3% (PTA)
- Freedom from TLR significantly higher with DCB

IN.PACT DEEP
- Binary restenosis 41% (DCB) vs. 35.5% (PTA)
- Clinically driven TLR comparable, 11.9% (DCB) vs. 13.5% (PTA)
- 12 month major amputation 8.8% (DCB) vs. 3.6% (PTA)

- No major amputations in DCB group

Potential Reasons for Success:

- Average DEBATE DCB balloon size was 0.56 larger than IN.PACT
- DEBATE pre-dilatation size ratio closer to 1:1 versus 0.9:1 with IN.PACT
- DEBATE acute luminal gain higher
Other Treatments

• Cryoplasty – No long term benefit
• Cutting balloon – No long term benefit
• Scoring balloon – No long term benefit

Based on comparative analysis
Is POBA the best option?

- Optimal infrapopliteal treatment modality remains controversial and PTA remains standard of care
- Contemporary meta-analysis performed (2005-2015) to assess current PTA outcomes
- 1-year outcomes from contemporary meta-analysis comparable to Romiti meta-analysis:
 - Technical success: 91% vs. 89%
 - Primary patency: 63% vs. 58%
 - Major amputation: 15% vs. 14%
 - All-cause mortality: 15% vs. 13%
- Infrapopliteal PTA outcomes have not changed over last decade despite advanced knowledge and techniques

The real problem is NOT what we think is the problem

- It is ALL in the WALL

<table>
<thead>
<tr>
<th>Calcific medial vasculopathy (Mönckeberg’s medial calcific sclerosis)</th>
<th>Tunica media</th>
<th>Type 2 diabetes mellitus; end-stage renal disease; hyperphosphatemia; amputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastocalcinosis</td>
<td>Internal elastic lamina/interna</td>
<td>Pseudoxanthoma elasticum; Marfan syndrome (concentric tibial calcification)</td>
</tr>
</tbody>
</table>
Thank you

Jihad A. Mustapha, MD, FACC, FSACI
Director of Cardiovascular Research
Metro Health Hospital
Wyoming, MI
Associate Clinical Professor of Medicine
Michigan State University College of Osteopathic Medicine
E. Lansing, MI
Current meta-analysis comparison between DCB and POBA in below-the-knee therapy

Jihad A. Mustapha, MD, FACC, FSCAI
Director of Cardiovascular Research
Metro Health Hospital
Wyoming, MI
Associate Clinical Professor of Medicine
Michigan State University College of Osteopathic Medicine
E. Lansing, MI