Simplified f-EVAR by a new endovascular device

Clinical safety and functionality study of The Guidewire Fixator

Krister Liungman MD, PhD, University Hospital Uppsala
Anders Wanhainen, MD Professor, University Hospital Uppsala
Kevin Mani, MD Ass Prof, University Hospital Uppsala
Linus Bosaeus, MSc, Endovascular Development
Disclosure

- I have the following potential conflicts of interest to report:
 - Receipt of grants/research support
 - Receipt of honoraria and travel support
 - Participation in a company sponsored speakers’ bureau
 - Employment in industry
 - Shareholder in a healthcare company, www.endovab.com
 - Owner of a healthcare company
- I do not have any potential conflict of interest
Problem: f/b-EVAR is far from EVAR

Retrospective single centre cohort study
Uppsala University Hospital

- 63 EVAR and 63 f/b-EVAR (2012-2015)
- Grouped by # of catheterised branches/fenestrations/scallops

<table>
<thead>
<tr>
<th>Variable</th>
<th>EVAR</th>
<th>2f/b-EVAR</th>
<th>3f/b-EVAR</th>
<th>4f/b-EVAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoroscopy (min)</td>
<td>30.3 / 10.1-102.8</td>
<td>82.0 / 37.2-237.8</td>
<td>102.5 / 52.2-174.9</td>
<td>151.5 / 91.2-289.9</td>
</tr>
<tr>
<td>DAP (mGym²)</td>
<td>22.5 / 1.8-132.0</td>
<td>26.1 / 9.6-79.3</td>
<td>39.9 / 11.3-89.3</td>
<td>52.0 / 20.4-93.9</td>
</tr>
<tr>
<td>Contrast Iodine (g)</td>
<td>30.9 / 8-72</td>
<td>42.8 / 14-115</td>
<td>51.6 / 23-132</td>
<td>78.4 / 28-148</td>
</tr>
<tr>
<td>Anaesthesia (min)</td>
<td>181 / 60-405</td>
<td>340 / 180-645</td>
<td>458 / 255-750</td>
<td>628 / 510-885</td>
</tr>
<tr>
<td>Proc. Duration (min)</td>
<td>141 / 70-349</td>
<td>392 / 250-724</td>
<td>476 / 213-900</td>
<td>559 / 383-752</td>
</tr>
<tr>
<td>Days at ICU</td>
<td>0.3 / 0-8</td>
<td>0.5 / 0-6</td>
<td>1.6 / 0-18</td>
<td>5.9 / 0-43</td>
</tr>
<tr>
<td>Days at hospital</td>
<td>5.1 / 1-27</td>
<td>6.7 / 2-26</td>
<td>11.4 / 2-40</td>
<td>17.4 / 4-46</td>
</tr>
</tbody>
</table>
Problem: f/b-EVAR is far from EVAR

- **Conclusion**
 - Linear relationship between # of catheterisations and procedure variables
 - Challenge: Finding the branch and gaining sheath access
Improvement trends

• "Off-the-shelf" **Pre-loaded** fenestrated or branched
• **Through-and-through** wires, LSA and IBD

Some Examples:

- Jotec IBD
- GORE arch-branch
- Medtronic LSA
- Cook t-branch
- Cook arch fen
- Cook p-branch
- GORE TAMBE
What if we could pre-line also the visceral arteries....
NEW APPROACH

New approach to simplify catheterisation and sheath access:
NEW APPROACH

New approach to simplify catheterisation and sheath access:

• “Guidewire anchor” is deployed in the branches before stentgraft insertion
NEW APPROACH

New approach to simplify catheterisation and sheath access:

• “Guidewire anchor” is deployed in the branches before stentgraft insertion
• Retrograde lining of branch wires – on table
NEW APPROACH

New approach to simplify catheterisation and sheath access:

• “Guidewire anchor” is deployed in the branches before stentgraft insertion
• Retrograde lining of branch wires – on table
• Railroad graft in place over multiple wires
NEW APPROACH

• Target vessel catheterisation post stentgraft deployment – **Eliminated**
• Less need for perfect alignment to achieve wire connection
NEW APPROACH

- Target vessel catheterisation post stentgraft deployment – **Eliminated**
- Less need for perfect alignment to achieve wire connection
- Sheath access improved by *traction through tension*
New tool – Guidewire fixator

- Guidewire 0.035” + stopper
- Freely movable over the guidewire
- Moderate radial force at rest, increases with tension
- Provide distal fixation while maintaining blood flow
Is it safe?

Clinical safety and functionality study of The Guidewire Fixator
Clinical Study

Objectives and endpoints

- Thrombosis / occlusion
- Rupture / trauma
- Dissection
- Fixation

Test Scheme

- Femoral cross over to the **internal iliac artery**
- Fixator **Deployment**
- **Tension Test** (3N)
- Fixator **Retrieval**
- Visual and **Angiographic evaluation**
- CT imaging 30 days
Results

Male/Female 8/2, n=10
Age 68-84, mean 75.4

- Thrombotic occlusions, 0 (0%)
- Arterial trauma, 0 (0%)
- Arterial dissection, 0 (0%)
- Fixation failures, 0 (0%)

Adverse Events

- 1 SAE - Not device related
- 1 AE- Challenging retrieval
Study Conclusion

The device was considered safe and functional in the tested conditions.
Use and potential Benefits

- secure guidewire position,
- parallel work,
- tension on GW adds to stiffness,

Distal fixation allows completely new guidewire techniques
Use and potential Benefits
- f/b EVAR

• Stepwise, predictable
 – Shorter procedure, reduced radiation, less contrast
• Opportunity for standardized grafts
 – Less need for perfect alignment for catheterisation

• Tension adds to stiffness
 – Facilitates sheath access and bridging graft insertion

Conceptual demonstration in pig model
Summary

A guidewire fixator enables new techniques & methods

Preclinical safety study in a pig model

Clinical safety and functionality study completed

CE-approved

Clinical application study in f/b EVAR, ch-EVAR

First in man LSA successfully completed
Simplified f-EVAR by a new endovascular device

Clinical safety and functionality study of The Guidewire Fixator

Krister Liungman MD,PhD, University Hospital Uppsala
Anders Wanhainen, MD Professor, University Hospital Uppsala
Kevin Mani, MD Ass Prof, University Hospital Uppsala
Linus Bosaeus, MSc, Endovascular Development