Endoanchors in practice-clinical applications and techniques for success

V. Riambau, MD, PhD
Professor and Chief of Vascular Surgery Division
CardioVascular Institute, Hospital Clinic, University of Barcelona
vriambau@clinic.ub.es
Disclosures

Consultant/Advisor

- Bolton Medical
- Cordis
- Bard
- Medtronic
- Aptus
- Lombard Medical
- iVascular
- MSD
- Bayer
- Astra Zeneca

Proctor

- Bolton Medical
- Cook
- Medtronic
- W.L. Gore
- Aptus
- Cordis
Index

- Background
- Product Overview
- Clinical insights and results
- Case Examples & technical tips
- Summary
Index

• Background
 • Product Overview
 • Clinical insights and results
 • Case Examples & technical tips
 • Summary
EVAR evidence: Reinterventions

EVAR reintervention rates worsen over time...

- **EVAR 1**
 - **Open repair** vs. **Endovascular repair**

- **DREAM**
 - **Probability of Freedom from Reintervention**

- **OVER**
 - **Cumulative Probability of Death or Secondary Procedure**

Which Proximal Necks are Hostile?

Predictor neck anatomic factors for EVAR failure

- Evaluated N=221 patients from ANCHOR post-market registry
- Failure defined as:
 - Type Ia endoleak upon endograft implantation
 - Type Ia endoleak identified in post-op follow-up*

*In endografts without EndoAnchors

Identified proximal neck variables that independently predict type Ia endoleak:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Requirement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck diameter</td>
<td>≥ 26 mm</td>
<td>.002</td>
</tr>
<tr>
<td>Neck length</td>
<td>≤ 17 mm</td>
<td>.017</td>
</tr>
</tbody>
</table>

Certain ‘on-label’ necks can be at-risk

Neck Dilation: A Cause for 2nd Intervention

Neck dilation in EVAR remains REAL

<table>
<thead>
<tr>
<th>Author</th>
<th>Follow-Up</th>
<th>Grafts studied</th>
<th>Proximal Neck Dilatation Rate</th>
<th>Outcomes in dilated necks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oberhuber et al.¹</td>
<td>39 mos average</td>
<td>Zenith (N=29), Talent (N=35), Excluder (N=39)</td>
<td>22% (defined as >2mm diam increase)</td>
<td>31% re-interventions</td>
</tr>
<tr>
<td>Pintoux et al.²</td>
<td>57 mos average</td>
<td>Talent (N=33), AneuRx (N=25)</td>
<td>24% (defined as >3mm diam increase)</td>
<td>5% late type Ia endoleak 16% migration</td>
</tr>
<tr>
<td>Bastos Gonçalves et al.³</td>
<td>5 yrs median</td>
<td>Excluder (N=144)</td>
<td>37% overall, 66% in pts >7 yrs f/u (defined as >2mm diam increase)</td>
<td>Increased odds of migration (≥5mm) 5.5x</td>
</tr>
</tbody>
</table>

Solutions for HOSTILE necks

CURRENT OPTIONS:
- Open Surgical Repair (OSR)
- FEVAR
- Off-the-shelf branch
- ChEVAR (parallel graft)
- Aneurysm filling

LIMITATIONS:

<table>
<thead>
<tr>
<th>OSR</th>
<th>FEVAR</th>
<th>BRANCH</th>
<th>ChEVAR</th>
<th>Aneurysm Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Patients not eligible due to significant co-morbidities
• Long recovery
• ICU</td>
<td>• Expensive
• Complex
• Custom-made - not available for rAAA
• Limited in angled anatomies
• Steep learning curve
• Long term reinterventions</td>
<td>• Experimental
• Steep learning curve
• Patient applicability not as high as originally perceived
• Lack of robust clinical evidence</td>
<td>• Lack of robust clinical evidence to prove safety and efficacy
• Technique not standardized</td>
<td>• Current technology lacks robust clinical evidence to prove safety and efficacy
• Changes to blood-flow dynamics</td>
</tr>
</tbody>
</table>
Solutions for HOSTILE necks

Complementary Technologies with existing stent graft technology

APTUS Endo Anchoring System (Heli-FX)
An off-the-shelf Solution
Tailored Seal and Fixation of EndoAnchors

CREATE THE STABILITY OF A SURGICAL ANASTOMOSIS IN EVAR AND TEVAR

Surgical Anastomosis

EndoAnchoring

Displacement force in Newtons

Case images courtesy of John Aruny MD, Bart Edward Muhs, MD, PhD.
Fixation tested to 500mm/Hg without failure
Heli-FX System: Applier + Guide + 10 EndoAnchors

Cross Bar

3 mm

1.0 mm

3.5 mm
Clinical Indications

Prophylaxis

Hostile Anatomy
- Overcoming concerns for implant stability
 - Challenging neck anatomies (e.g. wide, short, conical, angulated)
 - Difficult landing (e.g. birdbeaking, close to branched vessels)

Normal Anatomy
- Mitigating risk of reinterventions
 - Severe comorbidities that preclude safe reintervention
 - Patients potentially lost during F/U
 - Long remaining life expectancy (young pts)

Treatment

Resolve proximal seal failures
- Targeted sealing of acute type I endoleaks
- Targeted sealing of late type I endoleaks
- Augmented stability in migrated grafts

Aptus Heli-FX Product Offerings

- **Aptus™ Heli-FX™ Thoracic EndoAnchor™ System**
 - 18Fr OD, 90cm working length

- **Aptus™ Heli-FX™ Abdominal EndoAnchor™ System**
 - 16Fr OD, 62cm working length
The Aptus EndoAnchor and Heli-FX have been evaluated and determined to be compatible with the following endografts:
Note: C-arm positions above show just one possible combination
C-Arm Positioning for 6 EndoAnchors

Note: C-arm positions above show just one possible combination
Move C-Arm in 15-20 degree increments

- Identify leak channel and then create a “suture line” along wall.
- Circumferential anchoring before/after T1 EL treatment is recommended: address concerns of long-term neck morphology changes
Index

- Background
- Product Overview
- Clinical insights and results
- Case Examples & technical tips
- Summary
ANCHOR registry capturing real-world usage

<table>
<thead>
<tr>
<th>Registry Principal Investigators</th>
<th>Europe: Dr Jean-Paul de Vries - Chief of Vascular Surgery, St. Antonius Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US: Dr William Jordan - Chief of Vascular Surgery/Endovascular Therapy, Emory University School of Medicine</td>
</tr>
<tr>
<td>Registry Design</td>
<td>Prospective, observational, international, multi-center, dual-arm Registry</td>
</tr>
<tr>
<td>Treatment Arms</td>
<td>“Primary” - Up to 1000 pts, Prophylactic</td>
</tr>
<tr>
<td></td>
<td>“Revision” - Up to 1000 pts, Therapeutic</td>
</tr>
<tr>
<td>Enrollment & Duration</td>
<td>Enrollment began 2012 and patients will be followed for 5 years</td>
</tr>
<tr>
<td>Follow-up</td>
<td>Per Standard of Care at each center & discretion of Investigator</td>
</tr>
</tbody>
</table>

Over 600 Patients enrolled as of November 2015
PROXIMAL ENDOLEAKS AND MIGRATION

MEAN FOLLOW-UP 8.2 MONTHS

<table>
<thead>
<tr>
<th>Type Ia Endoleaks</th>
<th>All Primary Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a ELs</td>
<td>CTs</td>
</tr>
<tr>
<td>3</td>
<td>177</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endograft Migration (>10mm)</th>
<th>All Primary Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Migration</td>
<td>CTs</td>
</tr>
<tr>
<td>0</td>
<td>112</td>
</tr>
</tbody>
</table>

Migration was assessed in comparison to the 1-month CT scan
Persistent/Recurrent type Ia endoleaks

CORE LAB

MEAN CT FOLLOW-UP 10.4 MONTHS

<table>
<thead>
<tr>
<th>Cohort</th>
<th>1a ELs</th>
<th>CTs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>24</td>
<td>142</td>
<td>16.9%</td>
</tr>
<tr>
<td>Primary</td>
<td>3</td>
<td>76</td>
<td>3.9%</td>
</tr>
<tr>
<td>Revision</td>
<td>21</td>
<td>66</td>
<td>31.8%</td>
</tr>
</tbody>
</table>
Index

• Background
• Product Overview
• Clinical insights and results
• Case Examples & technical tips
• Summary
Primary EVAR - Wide Neck

Post balloon
Type 1
Primary EVAR - Short, Conical Neck
Primary EVAR - Intra-Op Type Ia endoleak
Revision EVAR - Late Type Ia endoleak

Late type I endoleak
Cuff and EndoAnchors implanted
Endoleak resolved
Primary FEVAR
Revision EVAR - endograft migration

Late endograft migration with Type Ia endoleak

Cuff and EndoAnchors implanted

Endoleak resolved
59 yo GI Surgeon
61 yo Endocrinologist
63 yo man
Primary TAA with Short/Angled Proximal Neck

- 63y/o Female
- Short proximal neck/seal zone
- LSA transposition performed prior to primary TEVAR

Case images courtesy of Thomas Naslund, MD - Vanderbilt University Medical Center
Primary TAA with Short/Angled Proximal Neck

Final angio:
• No endoleak
• Enhanced fixation in short seal zone

Case images courtesy of Thomas Naslund, MD - Vanderbilt University Medical Center
Reinforcing distal fixation:
Cranial migration and Type Ib endoleak

Distal neck =3cm, 63 yo lady
Index

• Background
• Product Overview
• Clinical insights and results
• Case Examples & technical tips
• Summary
- Hostile necks compromise early and long term outcomes for EVAR
- EndoAnchors are designed to bring long-term stability of surgical anastomosis to EVAR/TEVAR
- ANCHOR registry demonstrates
 - >90% success rate, no migration and <2% type 1a EL when Endoanchors are prophylactically applied in hostile necks (especially in young patients)
 - Endoanchors as a therapeutical tool, shows a >80% of success rate, but about 17% of type I ELs remain permanent
 - NO endoanchors-related adverse events have been reported in my knowledge.
Endoanchors in practice-clinical applications and techniques for success

V. Riambau, MD, PhD
Professor and Chief of Vascular Surgery Division
CardioVascular Institute, Hospital Clinic, University of Barcelona
vriambau@clinic.ub.es