The Use of Adjunctive Venography and Endovascular Manoeuvres In The Treatment of Saphenous Vein Insufficiency

A Prospective, Multi-centre Study

Ramon L. Varcoe, MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Sydney, Australia
Disclosure

Speaker name:

..........Ramon L. Varcoe...

I have the following potential conflicts of interest to report:

- Consulting: Medtronic, Abbott Vascular, Boston
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

- I do not have any potential conflict of interest
Ultrasound for Saphenous Vein Rx

• High quality
• Real-time imaging
• Without radiation

• Guide venous access
• Visualise ablation catheter
• Tumescence
Limitations of Ultrasound

- Anatomical complexities
- Venous strictures
- Duplicate saphenous systems
- Severe tortuosity
- Segmental occlusions
- Aneurysms
- Venous confluence deep within the leg
Study Design

Prospective, Multi-Centre design

Inclusion Criteria
- >18 yo
- CEAP 2-6
- Great-, small-, inter-saphenous or perforator ablation (RFA or CAE)
- Sonographic reflux >0.5 sec

Exclusion Criteria
- Pregnant patients
- Contrast allergy
- Renal impairment
- Those undergoing:
 - Surgical ligation/stripping
 - Simple phlebectomy
 - Pelvic embolization
 - Rx for May-Thurner syndrome

From: Varcoe et al. 2017 JEVT (in press, online)
Study Design

Prospective, Multi-Centre design

Inclusion Criteria

• >18 yo
• CEAP 2-6
• Great-, small-, inter-saphenous or perforator ablation (RFA or CAE)
• Sonographic reflux >0.5 sec

Exclusion Criteria

• Pregnant patients
• Contrast allergy
• Renal impairment
• Those undergoing:
 – Surgical ligation/stripping
 – Simple phlebectomy
 – Pelvic embolization
 – Rx for May-Thurner syndrome

From: Varcoe etal. 2017 JEVT (in press, online)
Study Design

Prospective, Multi-Centre design

Inclusion Criteria
• >18 yo
• CEAP 2-6
• Great-, small-, inter-saphenous or perforator ablation (RFA or CAE)
• Sonographic reflux >0.5 sec

Exclusion Criteria
• Pregnant patients
• Contrast allergy
• Renal impairment
• Those undergoing:
 – Surgical ligation/stripping
 – Simple phlebectomy
 – Pelvic embolization
 – Rx for May-Thurner syndrome

From: Varcoe et al. 2017 JEVT (in press, online)
Study Design

Prospective, Multi-Centre design

Inclusion Criteria
- >18 yo
- CEAP 2-6
- Great-, small-, inter-saphenous or perforator ablation (RFA or CAE)
- Sonographic reflux >0.5 sec

Exclusion Criteria
- Pregnant patients
- Contrast allergy
- Renal impairment
- Those undergoing:
 - Surgical ligation/stripping
 - Simple phlebectomy
 - Pelvic embolization
 - Rx for May-Thurner syndrome

<table>
<thead>
<tr>
<th>305</th>
<th>Venous trunks</th>
</tr>
</thead>
<tbody>
<tr>
<td>268</td>
<td>Limbs</td>
</tr>
<tr>
<td>200</td>
<td>Patients</td>
</tr>
</tbody>
</table>

October 2010 to May 2016

From: Varcoe et al. 2017 JEVT (in press, online)
Patient Demographics

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD, range)</td>
<td>60.9 ± 12.9 (33-86)</td>
</tr>
<tr>
<td>Women</td>
<td>128 (64%)</td>
</tr>
<tr>
<td>Number of legs treated</td>
<td>268</td>
</tr>
<tr>
<td>Number of saphenous trunks</td>
<td>305</td>
</tr>
</tbody>
</table>

Treatment Indication

<table>
<thead>
<tr>
<th>Condition</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary varicose veins</td>
<td>169 (85%)</td>
</tr>
<tr>
<td>Recurrent varicose veins</td>
<td>23 (12%)</td>
</tr>
<tr>
<td>Thrombophlebitis</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Ulceration</td>
<td>6 (3%)</td>
</tr>
</tbody>
</table>

CEAP Classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>Varicose veins</td>
<td>85 (43%)</td>
</tr>
<tr>
<td>C3</td>
<td>Oedema</td>
<td>65 (33%)</td>
</tr>
<tr>
<td>C4</td>
<td>Skin changes</td>
<td>30 (15%)</td>
</tr>
<tr>
<td>C5</td>
<td>Healed ulcer</td>
<td>5 (3%)</td>
</tr>
<tr>
<td>C6</td>
<td>Active ulcer</td>
<td>12 (6%)</td>
</tr>
</tbody>
</table>

From: Varcoe *etal*. 2017 JEVT (in press, online)
<table>
<thead>
<tr>
<th>Patient Demographics</th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD, range)</td>
<td>60.9 ± 12.9 (33-86)</td>
</tr>
<tr>
<td>Women</td>
<td>128 (64%)</td>
</tr>
<tr>
<td>Number of legs treated</td>
<td>268</td>
</tr>
<tr>
<td>Number of saphenous trunks</td>
<td>305</td>
</tr>
</tbody>
</table>

Treatment Indication

<table>
<thead>
<tr>
<th>Indication</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary varicose veins</td>
<td>169 (85%)</td>
</tr>
<tr>
<td>Recurrent varicose veins</td>
<td>23 (12%)</td>
</tr>
<tr>
<td>Thrombophlebitis</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Ulceration</td>
<td>6 (3%)</td>
</tr>
</tbody>
</table>

CEAP Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Varicose veins</td>
<td>85 (43%)</td>
</tr>
<tr>
<td>C3 Oedema</td>
<td>65 (33%)</td>
</tr>
<tr>
<td>C4 Skin changes</td>
<td>30 (15%)</td>
</tr>
<tr>
<td>C5 Healed ulcer</td>
<td>5 (3%)</td>
</tr>
<tr>
<td>C6 Active ulcer</td>
<td>12 (6%)</td>
</tr>
</tbody>
</table>

From: Varcoe et al. 2017 JEV (in press, online)
Patient Demographics

<table>
<thead>
<tr>
<th></th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD, range)</td>
<td>60.9 ± 12.9 (33-86)</td>
</tr>
<tr>
<td>Women</td>
<td>128 (64%)</td>
</tr>
</tbody>
</table>

Number of legs treated

268

Number of saphenous trunks

305

Treatment Indication

<table>
<thead>
<tr>
<th>Indication</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary varicose veins</td>
<td>169 (85%)</td>
</tr>
<tr>
<td>Recurrent varicose veins</td>
<td>23 (12%)</td>
</tr>
<tr>
<td>Thrombophlebitis</td>
<td>2 (1%)</td>
</tr>
<tr>
<td>Ulceration</td>
<td>6 (3%)</td>
</tr>
</tbody>
</table>

CEAP Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Varicose veins</td>
<td>85 (43%)</td>
</tr>
<tr>
<td>C3 Oedema</td>
<td>65 (33%)</td>
</tr>
<tr>
<td>C4 Skin changes</td>
<td>30 (15%)</td>
</tr>
<tr>
<td>C5 Healed ulcer</td>
<td>5 (3%)</td>
</tr>
<tr>
<td>C6 Active ulcer</td>
<td>12 (6%)</td>
</tr>
</tbody>
</table>

From: Varcoe *et al.* 2017 JEVT (in press, online)
<table>
<thead>
<tr>
<th>Insufficient Vein</th>
<th>n = 305</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great saphenous</td>
<td>241 (79%)</td>
</tr>
<tr>
<td>Small Saphenous</td>
<td>38 (13%)</td>
</tr>
<tr>
<td>Anterior accessory great saphenous</td>
<td>6 (2%)</td>
</tr>
<tr>
<td>Inter-saphenous (Giacomini)</td>
<td>10 (3%)</td>
</tr>
<tr>
<td>Perforator</td>
<td>10 (3%)</td>
</tr>
</tbody>
</table>

From: Varcoe et al. 2017 JEV (in press, online)
Venography

- 542 runs
 - Mean 2.0/limb
 - Median 1.0/limb

- Mean Time: 4.9 ±9.1 min (range 1-48)

- Nil contrast related morbidity*

*CIN, Anaphylaxis, Anaphylactoid reactions

From: Varcoe et al. 2017 JEVT (in press, online)
Venous Anomalies in 66%
Venous Anomalies in 66%

Duplicate System

33%

From: Varcoe et al. 2017 J EVT (in press, online)
Venous Anomalies in 66%

Duplicate System

Aneurysm

33% 28%

From: Varcoe et al. 2017 JEVT (in press, online)
Venous Anomalies in 66%

- Duplicate System: 33%
- Aneurysm: 28%
- Stenosis: 21%

From: Varcoe *etal.* 2017 JEVT (in press, online)
Venous Anomalies in 66%

- Duplicate System: 33%
- Aneurysm: 28%
- Stenosis: 21%
- Large Incompetent Perforator: 11%

From: Varcoe et al. 2017 JEVT (in press, online)
Venous Anomalies in 66%

- **Duplicate System**: 33%
- **Aneurysm**: 28%
- **Stenosis**: 21%
- **Large Incompetent Perforator**: 11%
- **Saphenous Occlusion**: 4%

From: Varcoe et al. 2017 JEVT (in press, online)
Venous Anomalies in 66%

- Duplicate System: 33%
- Aneurysm: 28%
- Stenosis: 21%
- Large Incompetent Perforator: 11%
- Saphenous Occlusion: 4%
- Filling Defect (Thrombus): 3%

From: Varcoe et al. 2017 JEV (in press, online)
OK, Anomalies are Interesting
BUT...
Did They Change Your Management?
Adjunctive Manoeuvres in 44%

From: Varcoe et al. 2017 JEVT (in press, online)
Adjunctive Manoeuvres in 44%

<table>
<thead>
<tr>
<th>Manoeuvre</th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of a low profile guide wire and angled catheter</td>
<td>53 (27%)</td>
</tr>
</tbody>
</table>

From: Varcoe *etal.* 2017 JEVT (in press, online)
Use of a low profile guide wire and angled catheter

27%

From: Varcoe et al. 2017 JEVET (in press, online)
Adjunctive Manoeuvres in 44%

<table>
<thead>
<tr>
<th>Manoeuvre</th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of a low profile guide wire and angled catheter</td>
<td>53 (27%)</td>
</tr>
<tr>
<td>Use of additional RFA or CAE in dilated segment</td>
<td>30 (15%)</td>
</tr>
</tbody>
</table>

From: Varcoe et al. 2017 JEV (in press, online)
Use of additional RFA or CAE in dilated segment 15%

From: Varcoe etal. 2017 JEVT (in press, online)
Adjunctive Manoeuvres in 44%

<table>
<thead>
<tr>
<th>Manoeuvre</th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of a low profile guide wire and angled catheter</td>
<td>53 (27%)</td>
</tr>
<tr>
<td>Use of additional RFA or CAE in dilated segment</td>
<td>30 (15%)</td>
</tr>
<tr>
<td>Simultaneous treatment of multiple incompetent saphenous vein trunks</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>Selective cannulation of an incompetent saphenous vein</td>
<td>24 (12%)</td>
</tr>
</tbody>
</table>

From: Varcoe *et al.* 2017 JEVT (in press, online)
Selective Cannulation in 12%

Treated multiple Trunks in 2%

From: Varcoe et al. 2017 JEVT (in press, online)
<table>
<thead>
<tr>
<th>Manoeuvre</th>
<th>n = 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of a low profile guide wire and angled catheter</td>
<td>53 (27%)</td>
</tr>
<tr>
<td>Use of additional RFA or CAE in dilated segment</td>
<td>30 (15%)</td>
</tr>
<tr>
<td>Simultaneous treatment of multiple incompetent saphenous vein trunks</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>Selective cannulation of an incompetent saphenous vein</td>
<td>24 (12%)</td>
</tr>
<tr>
<td>Fluoroscopic guidance to negotiate the superficial-deep-vein junction</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>Fluoroscopic guidance to position the radiofrequency probe</td>
<td>27 (14%)</td>
</tr>
</tbody>
</table>

From: Varcoe et al. 2017 JEV (in press, online)
Fluoroscopic guided probe positioning in 14%.

From: Varcoe et al. 2017 JEVT (in press, online)
How Often did X-ray Guidance Facilitate Complete Saphenous Ablation?
Self Reported Rate of 34/200 (17%)

“UNABLE TO COMPLETE Rx WITHOUT XRAY”

…Where the operator felt that the procedure would have to be left incomplete or converted to foam without an endovascular manoeuvre….

From: Varcoe etal. 2017 JEVT (in press, online)
Self Reported Rate of 34/200 (17%)

<table>
<thead>
<tr>
<th>Required Manoeuvre</th>
<th>n = 34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective cannulation of an incompetent saphenous trunk required</td>
<td>14 (41%)</td>
</tr>
<tr>
<td>Severe Tortuosity</td>
<td>13 (38%)</td>
</tr>
<tr>
<td>Stenosis Preventing Passage of Probe/Catheter</td>
<td>9 (27%)</td>
</tr>
<tr>
<td>Occluded Saphenous Vein (with an incompetent proximal segment)</td>
<td>5 (15%)</td>
</tr>
</tbody>
</table>

From: Varcoe *etal.* 2017 JEVT (in press, online)
Based on mean 2.0 runs/limb
0.74 mSv/limb
Risk 1 in 36,000 fatal cancer

Source: Australian Radiation Protection and Nuclear Safety Agency
Based on mean 2.0 runs/limb
- 0.74 mSv/limb
- Risk 1 in 36,000 fatal cancer

Compared with...
- 1.5 mSv - a year’s environmental exposure
- 1-5 mSv – CT Brain
- 5-10 mSv – Coronary angiography
- >10 mSv – CT Abdo/Pelvis (multi-phase)
Based on mean 2.0 runs/limb
- 0.74 mSv/limb
- Risk 1 in 36,000 fatal cancer

Compared with...
- 1.5 mSv - a year’s environmental exposure
- 1-5 mSv – CT Brain
- 5-10 mSv – Coronary angiography
- >10 mSv – CT Abdo/Pelvis (multi-phase)

Source: Australian Radiation Protection and Nuclear Safety Agency
Summary

• A significant number of venous anomalies go unrecognised by standard duplex imaging
• A number of those (44%) benefit from “x-ray guided endovascular assistance”
• Without that assistance 1 in 5 will be left with incomplete treatment or converted to foam
• There is definite value in using x-ray guidance in selected patients
The Use of Adjunctive Venography and Endovascular Manoeuvres In The Treatment of Saphenous Vein Insufficiency

A Prospective, Multi-centre Study

Ramon L. Varcoe, MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Sydney, Australia
The Use of Adjunctive Venography and Endovascular Manoeuvres in The Treatment of Saphenous Vein Insufficiency

A Prospective, Multi-centre Study

Ramon L. Varcoe, MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Sydney, Australia