The Dynamics of Venous Stent Design

Stephen Black
Consultant Vascular Surgeon
Clinical Lead for Venous and Lymphoedema Surgery
Guys and St Thomas’ Hospitals London
Design Constraints

- Design inputs have real world constraints
- Requirements and constraints often compete
- The ideal design is unachievable
Engineering Requirements

- Crush Resistance
- Flexibility
- Radial Strength
- Deployment
- Scaffolding (Coverage)
- Diameters & Lengths

“The ideal stent would be flexible with moderate radial force, no foreshortening, and allow for very precise and accurate placement.” - Brooke Spencer, MD, FSIR

Some desirable features are common to all stents, not just venous devices, and include precise deployment, good visibility, and flexibility of both a low profile delivery catheter and the deployed stent. However, certain attributes are more suited for venous applications, such as larger diameters (≥14 mm) and appropriate levels of radial force and crush resistance.” - Mahmood K. Razavi, MD, FSIR

“The ideal stent has to be reasonably long and flexible, yet provide adequate radial strength to withstand opposing forces at the choke points.” - Seshadri Raju, MD, FACS

Venous Stenting: Expectations and Reservations; Raju S, Razavi MK, Spencer B, Williams DM, Endovascular Today, July 2013
Key Stent Features

Chronic Outward Force:
How much the stent pushes outward. Changes with diameter expansion. Often called Radial Force.

Crush Resistance:
How much the stent can resist a single load.

Radial Resistive Force:
How much circumferential load a stent can resist.
Radial Resistive Force

16mm Stent Radial Strength

Radial Resistive Force: How much circumferential load the stent can take
Crush Resistance

Closed Cell

- Stent Force (N) vs. Extension (mm)
 - Closed Cell - midpoint
 - Closed Cell - endpoint

Open Cell

- Stent Force (N) vs. Extension (mm)
 - Open Cell - midpoint
 - Open Cell - endpoint

Hybrid

- Stent Force (N) vs. Extension (mm)
 - Hybrid - midpoint
 - Hybrid - endpoint

Braided

- Stent Force (N) vs. Extension (mm)
 - Braided - midpoint
 - Braided - endpoint
It is principally about Radius

Suppose the original flowrate is 100 cm³/sec. The effect of changes in the parameters is as follows:

- Double length → 50 cm³/sec
- Double viscosity → 50 cm³/sec
- Double pressure → 200 cm³/sec
- Double radius → 1600 cm³/sec

\[R = \frac{8\eta L}{\pi r^4} \text{ where } \eta = \text{viscosity} \]

\[\frac{\text{Volume Flowrate}}{\text{Flowrate}} = \frac{P_1 - P_2}{R} = \frac{\pi(\text{Pressure difference})(\text{radius})^4}{8(\text{viscosity})(\text{length})} \]

A 19% increase in radius will double the volume flowrate!
Three Key Points

• May Thurner compression
• Confluence of the EIV and CIV in the pelvis
• Ligament and CFV

Secondary considerations
– Contralateral limb coverage
– IIV coverage

All these require different stent properties
Competitive Designs

<table>
<thead>
<tr>
<th></th>
<th>Closed Cell</th>
<th>Open Cell</th>
<th>Hybrid</th>
<th>Braided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crush Resistance</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Flexibility</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Radial Strength</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>Deployment</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Scaffolding</td>
<td>++</td>
<td>-</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Diameters & Lengths</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Not ‘Strong’ Enough

Arterial stent

Expanded with Venous Stent
Oblique Design
Contralateral Limb
<table>
<thead>
<tr>
<th></th>
<th>Acute iliofemoral DVT</th>
<th>Chronic post-thrombotic patients</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Males</td>
<td>66 (44%)</td>
<td>102 (43%)</td>
<td>168</td>
</tr>
<tr>
<td>Median age (yrs)</td>
<td>44</td>
<td>39</td>
<td>73</td>
</tr>
<tr>
<td>Left sided symptoms</td>
<td>52 (79%)</td>
<td>78 (76%)</td>
<td>130</td>
</tr>
<tr>
<td>Bilateral symptoms</td>
<td>8 (12%)</td>
<td>14 (14%)</td>
<td>22</td>
</tr>
<tr>
<td>Thrombolophilia</td>
<td>13 (20%)</td>
<td>36 (35%)</td>
<td>49</td>
</tr>
<tr>
<td>Pre-operative Venous Disability Score (0-3, median)</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>C-class 3</td>
<td>-</td>
<td>25 (25%)</td>
<td>-</td>
</tr>
<tr>
<td>C-class 4</td>
<td>-</td>
<td>57 (56%)</td>
<td>-</td>
</tr>
<tr>
<td>C-class 5</td>
<td>-</td>
<td>6 (6%)</td>
<td>-</td>
</tr>
<tr>
<td>C-class 6</td>
<td>-</td>
<td>14 (14%)</td>
<td>-</td>
</tr>
<tr>
<td>Pre-operative Villalta Score (non-ulcer)</td>
<td>-</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>Pre-operative pain</td>
<td>-</td>
<td>87 (85%)</td>
<td>-</td>
</tr>
<tr>
<td>Pre-operative swelling</td>
<td>-</td>
<td>88 (86%)</td>
<td>-</td>
</tr>
<tr>
<td>Local anaesthetic</td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>Total number of stents deployed</td>
<td>152</td>
<td>284</td>
<td>436</td>
</tr>
<tr>
<td>Median number of stents deployed</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cook Zilver Vena (no of patients)</td>
<td>44 (67%)</td>
<td>28 (27%)</td>
<td>72</td>
</tr>
<tr>
<td>Veniti Vici (no of patients)</td>
<td>15 (23%)</td>
<td>54 (53%)</td>
<td>69</td>
</tr>
<tr>
<td>Wallstent (no of patients)</td>
<td>6 (9%)</td>
<td>14 (14%)</td>
<td>20</td>
</tr>
<tr>
<td>Other stent - Sinus XL, Sinus venous, Sinus-Obliquus (no of patients)</td>
<td>1 (2%)</td>
<td>6 (6%)</td>
<td>7</td>
</tr>
<tr>
<td>Stent crossing the inguinal ligament</td>
<td>25 (38%)</td>
<td>75 (74%)</td>
<td>100</td>
</tr>
<tr>
<td>EndoPhlebectomy (no of patients)</td>
<td>0</td>
<td>6 (6%)</td>
<td>6</td>
</tr>
<tr>
<td>Re-intervention</td>
<td>17 (26%)</td>
<td>48 (47%)</td>
<td>65</td>
</tr>
</tbody>
</table>
What have we seen

- Stent compression at the May Thurner
- Fractures at the ligament
- No issues at the EIV/CIV confluence
- No IIV thrombosis
- No contralateral limb thrombosis
Conclusions

• The stent alone is not the panacea
• Know each device and technical issues
• Be honest in feedback and know this is just the beginning
• We need long term patient outcome data to support use
• We do not have data yet to know if this is durable
The Dynamics of Venous Stent Design

Stephen Black
Consultant Vascular Surgeon
Clinical Lead for Venous and Lymphoedema Surgery
Guys and St Thomas’ Hospitals London