LUTONIX AV Clinical Trial

A Prospective, Global, Multicenter, Randomized, Controlled Study Comparing LUTONIX® 035 AV Drug Coated Balloon PTA Catheter vs. Standard Balloon PTA Catheter for the Treatment of Dysfunctional AV Fistulae

Scott O. Trerotola, MD
Stanley Baum Professor of Radiology
Professor of Surgery
Associate Chair and Chief, Vascular and Interventional Radiology
Vice Chair for Quality
Perelman School of Medicine of the University of Pennsylvania

AV IDE Protocol CL0023-01
Disclosure

Speaker name:
Scott O. Trerotola, MD

I have the following potential conflicts of interest to report:

- [X] Consulting
- [] Employment in industry
- [] Stockholder of a healthcare company
- [] Owner of a healthcare company
- [X] Other(s)

- [] I do not have any potential conflict of interest
Conflicts of Interest

- Paid consultant for the following companies:
 - Bard Peripheral Vascular
 - LUTONIX
 - WL Gore
 - B Braun
 - Teleflex
 - Medcomp
 - Cook

- Royalties
 - Cook
 - Teleflex
Lutonix AV Clinical Trial

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Prospective, Global, Multicenter, Randomized, Safety and Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>To assess the safety and effectiveness of the LUTONIX® 035 AV Drug Coated Balloon PTA Catheter in the treatment of dysfunctional AV fistulae</td>
</tr>
<tr>
<td>Number of patients/sites</td>
<td>285 randomized subjects at 23 clinical sites</td>
</tr>
<tr>
<td>Primary effectiveness endpoint</td>
<td>Target Lesion Primary Patency (TLPP) - 6 months</td>
</tr>
<tr>
<td>Primary safety endpoint</td>
<td>Freedom from any serious adverse event(s) involving the AV access circuit through 30 days</td>
</tr>
<tr>
<td>Follow up</td>
<td>1, 3, 6, 9, 12, 18, 24 month visits</td>
</tr>
</tbody>
</table>
| **Status** | **First Subject: June 2015**
Enrollment Completion: March 2016 |
Lutonix AV Clinical Trial

Key Inclusion Criteria

CLINICAL
- Male or non-pregnant female ≥21 years old
- Upper extremity AV fistula w/clinical, physiological, or hemodynamic abnormality
- Fistula created ≥30 days
 - 1+ hemodialysis session
 - 2 needles
 - Catheter removed ≥30 days

ANGIOGRAPHIC
- Length ≤10 cm
- ≥50% stenosis
- Successful pre-dilation
- Diameter 4-12 mm
Lutonix AV Clinical Trial

Key Exclusion Criteria

CLINICAL
- Lower extremity access
- Central veins
- Thrombosed access

ANGIOGRAPHIC
- >2 Lesions in circuit
- Secondary non-target lesion that cannot be successfully treated
- Central veins as a secondary lesion, which is clinically significant
- Bare or covered stent in target or secondary non-target lesions
Lutonix AV Clinical Trial

Inclusion Criteria

Axillosubclavian Junction

Fistula Anastomosis

Image courtesy of Bard: illustration by Paul Schiffmacher
Study Design

Lutonix AV Clinical Trial

Non-target lesion treated (if needed)
Residual stenosis ≤30%

Pre-Dilation with PTA

Pre-dilation lesion(s) treatment area criteria

Residual stenosis ≥30%

No enrollment in study
Further treatment per standard practice

Residual stenosis ≤30%
Completely efface waist
No clinical significant dissection/extraavasation

Randomization (1:1)
Enrollment in study

Treatment with Lutonix DCB (TEST)
≥ 1:1 Pre-Dil and test balloon sizing

Follow-up: 1,3,6,9,12,18 and 24 months; unscheduled visits

Treatment with Standard PTA (CONTROL)
≥ 1:1 Pre-Dil and control balloon sizing
Demographics

<table>
<thead>
<tr>
<th></th>
<th>DCB (n=141)</th>
<th>PTA (n=144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Age</td>
<td>63.6</td>
<td>61.0</td>
</tr>
<tr>
<td>Male (%)</td>
<td>61.7%</td>
<td>59.0%</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>94.3%</td>
<td>98.6%</td>
</tr>
<tr>
<td>Diabetes mellitus (%)</td>
<td>58.2%</td>
<td>65.3%</td>
</tr>
<tr>
<td>Dyslipidemia (%)</td>
<td>60.3%</td>
<td>58.3%</td>
</tr>
<tr>
<td>Current smoking (%)</td>
<td>13.5%</td>
<td>14.6%</td>
</tr>
<tr>
<td>Peripheral arterial disease (%)</td>
<td>9.9%</td>
<td>18.1%</td>
</tr>
<tr>
<td>Coronary artery disease (%)</td>
<td>30.5%</td>
<td>27.8%</td>
</tr>
</tbody>
</table>
Lutonix AV Clinical Trial

Treated Fistula Locations

Upper arm
DCB: 61.7% / PTA: 73.4%

Antecubital fossa
DCB: 5.0% / PTA: 4.9%

Forearm
DCB: 33.3% / PTA: 21.7%

Image courtesy of Bard: illustration by Paul Schiffmacher
Treated Vessel Locations

<table>
<thead>
<tr>
<th></th>
<th>DCB (n=141)</th>
<th>PTA (n=144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subclavian vein (%)</td>
<td>0.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Brachial vein (%)</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Cephalic vein (%)</td>
<td>68.8%</td>
<td>67.4%</td>
</tr>
<tr>
<td>Basilic vein (%)</td>
<td>25.5%</td>
<td>28.5%</td>
</tr>
<tr>
<td>Median cubital vein (%)</td>
<td>1.4%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Other (%)</td>
<td>2.8%</td>
<td>2.8%</td>
</tr>
</tbody>
</table>

Image courtesy of Bard: illustration by Paul Schiffmacher
Lutonix AV Clinical Trial
Target Lesion Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>DCB (n=141)</th>
<th>PTA (n=144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastomotic (%)</td>
<td>4.3%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Cephalic arch (%)</td>
<td>18.7%</td>
<td>22.5%</td>
</tr>
<tr>
<td>In cannulation zone (%)</td>
<td>4.3%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Inflow (%)</td>
<td>33.8%</td>
<td>29.6%</td>
</tr>
<tr>
<td>Outflow (%)</td>
<td>24.5%</td>
<td>22.5%</td>
</tr>
<tr>
<td>Swing point (%)</td>
<td>14.4%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>

Image courtesy of Bard: illustration by Paul Schiffmacher
Lutonix AV Clinical Trial
Lesion Characteristics

<table>
<thead>
<tr>
<th></th>
<th>DCB (n=141)</th>
<th>PTA (n=144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De novo, (%)</td>
<td>30.5%</td>
<td>27.1%</td>
</tr>
<tr>
<td>Tandem, (%)</td>
<td>2.8%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Target lesion length, mm (mean ± SD)</td>
<td>28.4 ± 15.09</td>
<td>29.5 ± 18.69</td>
</tr>
</tbody>
</table>
Lutonix AV Clinical Trial
Primary Safety at 240 Days

95% CI of the rate and the rate difference at each time point were calculated based on normal approximation and one-sided p-value is from test for non-inferiority, with 10% as non-inferiority margin.

Data shown are interim, site reported and subject to change.
Target Lesion Primary Patency (TLPP) ends with a clinically driven re-intervention of the target lesion or access thrombosis.

95% CI of the rate and rate difference at each time point were calculated based on normal approximation using Greenwood formula variance estimators. Log-Rank Test was used to compare the two treatment curves between Day 0-240 and one-sided p-value was provided.

Data shown are interim, site reported and subject to change.
Lutonix AV Clinical Trial

Number of Interventions Required to Maintain TLP at 240 Days

<table>
<thead>
<tr>
<th></th>
<th>LTX DCB (n=141)</th>
<th>Standard PTA (n=144)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of interventions</td>
<td>66</td>
<td>94</td>
<td>0.024</td>
</tr>
<tr>
<td>n</td>
<td>141</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>0.47 (0.732)</td>
<td>0.65 (0.805)</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Min – Max</td>
<td>0 - 3</td>
<td>0 - 4</td>
<td></td>
</tr>
</tbody>
</table>

*Two-sided P-value
Lutonix AV Clinical Trial

Summary

• First in fistula trial designed to incorporate a wide variety of lesions/fistula types

• 240 day results demonstrated:
 • Safety outcomes non-inferior to PTA
 • Target lesion primary patency
 • 61.6% DCB vs. 49.4% PTA (Δ 12.2% p = 0.02)*
 • 29.8% fewer interventions required to maintain TLP in DCB arm

*one-sided P-value
A Prospective, Global, Multicenter, Randomized, Controlled Study Comparing LUTONIX® 035 AV Drug Coated Balloon PTA Catheter vs. Standard Balloon PTA Catheter for the Treatment of Dysfunctional AV Fistulae

Scott O. Trerotola, MD
Stanley Baum Professor of Radiology
Professor of Surgery
Associate Chair and Chief, Vascular and Interventional Radiology
Vice Chair for Quality
Perelman School of Medicine of the University of Pennsylvania

AV IDE Protocol CL0023-01