A Cost-Analysis Study Comparing Endovascular and Surgical Options for Patients with Chronic Lower Limb Ischaemia

Ramon L. Varcoe, MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Sydney, Australia
Disclosure

Speaker name:
..........Ramon L. Varcoe...

I have the following potential conflicts of interest to report:

- Consulting: Medtronic, Abbott Vascular, Boston
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

- I do not have any potential conflict of interest
Peripheral Artery Disease

- A global epidemic
- Affecting more than 202 million people worldwide (in 2010)\(^1\)
- Increasing incidence of 23.5% every 10 years
- More rapidly increasing in low-middle income countries

\(^1\) Fowkes FG et al. Lancet 2013;382:1329-40
The COST of PAD

• In 2010 the total global cost attributable to CVD was US$863 billion\(^1\)
• It is expected to increase 22% to US$1,044 billion in 2030 as our population ages (greater in LMIC)
• PAD is the third leading cause of death in this group, but the largest associated cost

A Contemporary Analysis

• A number of older studies have demonstrated lower costs treating PAD with EVT compared with open surgery (1995-2008)\(^1\)

• There are NO contemporary cost-analyses with EXPENSIVE endovascular devices
 • New generation stents
 • Re-entry and crossing devices
 • CTO dedicated guidewires and catheters

\(^1\) Moriarty JP. et al. Systematic Review JVS 2011;54:1131-44
Methods

• 1-July-2013 to 30-Jun-2016
• Prospective database
• Individualised PATIENT SPECIFIC costing data
Methods

- 1-July-2013 to 30-Jun-2016
- Prospective database
- Individualised PATIENT SPECIFIC costing data
- Encompassing ALL hospitalised patients
- Two Major Teaching Hospitals
- Health-care-provider perspective (not societal)
- Economic outcomes only (not clinical)
<table>
<thead>
<tr>
<th>Cost Categories</th>
<th>Goods</th>
<th>Services</th>
<th>Wages</th>
<th>VMO Payments</th>
<th>Superannuation and Workers Comp. Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allied Health</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Medical</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nursing</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Critical Care (ICU, HDU, CTICU, CCU, NICU, PICU)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Imaging</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Operating Theatres</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Pathology</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Pharmacy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Prosthetics</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist Procedural Suites</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ward</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administration</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Costs</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

(excl. prosthetics)
Inclusion Criteria

1. Chronic Lower Limb Ischaemia (RC 3-6)

2. Underwent either:

 i. *Open*-* or Endovascular-Revascularisation procedure*

 ii. *Minor or major amputation*
Inclusion Criteria

1. Chronic Lower Limb Ischaemia (RC 3-6)
2. Underwent either:
 i. Open- or Endovascular-Revascularisation procedure
 ii. Minor or major amputation

Exclusion Criteria

1. Both open and endovascular procedures
2. Minor amputation then went on to major
Endovascular Revascularisation

924 Patients

4 Also had Open

920 Unique Endovascular Revascularisation Procedure

303 Rutherford 3

82 Rutherford 4

535 Rutherford 5 or 6
Endovascular Revascularisation

<table>
<thead>
<tr>
<th>Procedure Type</th>
<th>N=920</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA</td>
<td>346</td>
</tr>
<tr>
<td>Stent (1x)</td>
<td>429</td>
</tr>
<tr>
<td>Stent (>1x)</td>
<td>143</td>
</tr>
<tr>
<td>Atherectomy</td>
<td>2</td>
</tr>
</tbody>
</table>
Open Surgical Revascularisation

- 67 Patients
- 63 Unique Open Revascularisation Procedure
 - 27 Rutherford 3
 - 6 Rutherford 4
 - 30 Rutherford 5 or 6
- 4 Also had Endo
Open Surgical Revascularisation

<table>
<thead>
<tr>
<th>Surgery</th>
<th>N=63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorto- or Ilio-femoral Bypass</td>
<td>5</td>
</tr>
<tr>
<td>Extra-anatomical Bypass</td>
<td>12</td>
</tr>
<tr>
<td>Fem-pop Bypass (Above Knee)</td>
<td>7</td>
</tr>
<tr>
<td>Fem-pop Bypass (Below Knee)</td>
<td>18</td>
</tr>
<tr>
<td>Fem-tibial Bypass</td>
<td>18</td>
</tr>
<tr>
<td>Popliteal-tibial Bypass</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
</tbody>
</table>
Open Surgical Revascularisation

<table>
<thead>
<tr>
<th>Surgery</th>
<th>N=63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aorto- or Ilio-femoral Bypass</td>
<td>5</td>
</tr>
<tr>
<td>Extra-anatomical Bypass</td>
<td>12</td>
</tr>
<tr>
<td>Fem-pop Bypass (Above Knee)</td>
<td>7</td>
</tr>
<tr>
<td>Fem-pop Bypass (Below Knee)</td>
<td>18</td>
</tr>
<tr>
<td>Fem-tibial Bypass</td>
<td>18</td>
</tr>
<tr>
<td>Popliteal-tibial Bypass</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
</tbody>
</table>
Resource Utilisation

- **Open Surgery**
 - ICU (Mean Hours): 13.37
 - Bed Days: 8.83

- **Endovascular**
 - ICU (Mean Hours): 2.44
 - Bed Days: 3.25

P < 0.0001
SPECIFIC Costing Data ($AUD)

- Open Surgery

- Allied Health
- Medical
- Nursing
- Critical Care
- Imaging
- Operating Theatre
- Pathology
- Pharmacy
- Prosthetics
- Specialist Procedural Suites
- Administration
- On Costs

Costs range from $0.00 to $9,000.00.
Average Total Cost ($AUD)

- Open Surgery: $26,489.92
- Endovascular: $13,063.59

P < 0.0001
How Does the Cost of Revascularisation Compare With Amputation?
Minor Amputation

204 Patients

1 Went on to Major

203 Unique Minor Amputation

- 56 Toe
- 133 Toe + Metatarsal
- 5 Mid Tarsal
- 9 Trans-metatarsal
Major Amputation

38

Major Amputation

8 Above Knee

30 Below Knee
Resource Utilisation

<table>
<thead>
<tr>
<th>Procedure</th>
<th>ICU (Mean Hours)</th>
<th>Bed Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Surgery</td>
<td>13.37</td>
<td>8.83</td>
</tr>
<tr>
<td>Endovascular</td>
<td>2.44</td>
<td>3.25</td>
</tr>
<tr>
<td>Major Amputation</td>
<td>50.32</td>
<td>17.79</td>
</tr>
<tr>
<td>Minor Amputation</td>
<td>2.62</td>
<td>12.68</td>
</tr>
</tbody>
</table>
SPECIFIC Costing Data ($AUD)

Costs associated with increased length of stay
Average Total Cost ($AUD)

- Major Amputation: $47,116.75
- Minor Amputation: $28,850.74

P<0.0001
Average Total Cost ($AUD)

- Open Surgery: $26,489.92
- Endovascular: $13,063.59
- Major Amputation: $47,116.75
- Minor Amputation: $28,850.74

P < 0.0001
Limitations

• Only inpatient costs
• Did not include rehab or nursing home costs after amputation
• Does not capture out of hospital costs associated with PAD
• Systematic underestimation of true PAD costs
• No data is provided for repeat interventions
Conclusion

• The short-term cost of contemporary EVT is significantly less than both open-surgical revascularisation and amputation

• There are increased prosthetic costs with EVT

• Markedly outweighed by costs associated with length of stay & ICU utilisation
A Cost-Analysis Study Comparing Endovascular and Surgical Options for Patients with Chronic Lower Limb Ischaemia

Ramon L. Varcoe, MBBS, MS, FRACS, PhD
Associate Professor of Vascular Surgery
University of New South Wales
Sydney, Australia