Long term outcomes of coil embolization for Type II endoleak after EVAR

Department of Cardiovascular Medicine
Graduate School of Medicine Kyoto University
Junichi Tazaki, Hirooki Higami, Kiyonari Nanto, Osamu Iida, Takeshi Kimura
Disclosure

Speaker name:

...

I have the following potential conflicts of interest to report:

- Consulting
- Employment in industry
- Stockholder of a healthcare company
- Owner of a healthcare company
- Other(s)

- I do not have any potential conflict of interest
Background

Recently, EVAR has been established as the standard treatment for AAA.

Aneurysm expansion due to type 2 endoleak (EL) is one of the major troubles after EVAR.

Long-term outcome about persistent type 2 EL and coil embolization is still unclear.
Current Study Population: 418 patients

EVAR Registry
426 consecutive patients underwent EVAR between November 2006 and July 2014

Encovascular therapy for stenotic lesion: 2 cases
Secondary EVAR for type I endoleak: 3 cases
EVAR for pseudo aneurysm at anastomosis site: 2 cases
EVAR for ruptured AAA: 1 case

Study flow

Type II EL - 342 cases
Type II EL + 76 cases

Endpoint
✓ Major adverse event (MAE): Free from type I/III leak, aneurysm related death, aneurysm rupture, surgical conversion, graft infection or thrombosis, aneurysm expansion (>5mm)
✓ Additional endovascular procedure
Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Type II(+) n=76</th>
<th>Type II(-) N=342</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>80%</td>
<td>85%</td>
<td>0.27</td>
</tr>
<tr>
<td>Age</td>
<td>75.3±7.6</td>
<td>76.5±7.8</td>
<td>0.10</td>
</tr>
<tr>
<td>Aneurysm diameter</td>
<td>51.2±8.7</td>
<td>48.8±10.6</td>
<td>0.04</td>
</tr>
<tr>
<td>HTN</td>
<td>66(87%)</td>
<td>280(82%)</td>
<td>0.34</td>
</tr>
<tr>
<td>DM</td>
<td>11(14%)</td>
<td>52(15%)</td>
<td>0.86</td>
</tr>
<tr>
<td>DLP</td>
<td>51(67%)</td>
<td>220(65%)</td>
<td>0.69</td>
</tr>
<tr>
<td>IHD</td>
<td>30(39%)</td>
<td>142(42%)</td>
<td>0.71</td>
</tr>
<tr>
<td>Medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspirin</td>
<td>43(57%)</td>
<td>203(59%)</td>
<td>0.65</td>
</tr>
<tr>
<td>Thienopyridine</td>
<td>11(14%)</td>
<td>54(16%)</td>
<td>0.77</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>7(9.2%)</td>
<td>40(12%)</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Major adverse event (MAE): Free from type I/III leak, aneurysm related death, aneurysm rupture, surgical conversion, graft infection or thrombosis, aneurysm expansion (>5mm)
Additional Endovascular Therapy

![Graph showing cumulative incidence vs. interval (days) for Type II EL(-) and Type II EL (+). The graph indicates a significant difference with P < 0.0001.]

<table>
<thead>
<tr>
<th>Interval</th>
<th>0 day</th>
<th>1 year</th>
<th>2 year</th>
<th>3 year</th>
<th>4 year</th>
<th>5 year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of pts at risk</td>
<td>342</td>
<td>277</td>
<td>209</td>
<td>158</td>
<td>111</td>
<td>73</td>
</tr>
<tr>
<td>Type II +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N of pts at risk</td>
<td>76</td>
<td>59</td>
<td>44</td>
<td>30</td>
<td>20</td>
<td>9</td>
</tr>
</tbody>
</table>
Additional endovascular intervention 46 cases

<table>
<thead>
<tr>
<th>Graft</th>
<th>n=26/418</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zenith</td>
<td>5/54(9.2%)</td>
</tr>
<tr>
<td>Excluder</td>
<td>16/207(7.7%)</td>
</tr>
<tr>
<td>Endurant</td>
<td>2/54(3.7%)</td>
</tr>
<tr>
<td>Powerlink/AFX</td>
<td>3/21(14%)</td>
</tr>
</tbody>
</table>
Our indication of coil embolization for type II endoleak

- Sac enlargement due to type II endoleak after index EVAR
- Sac re-enlargement after once sac diameter was shrinkage
- Definite type II endoleak and sac diameter AAA>55mm IAA>40mm

Sac re-enlargement case

Pre 49mm 1y 37mm 2y 43mm
Type II EL after EVAR
Our strategy of coil embolization for Type II EL

Key point: Inflow-Sac-Outflow embolization
Coil embolization for Type II EL after EVAR
Coil embolization for Type II EL after EVAR
Coil embolization for Type II EL after EVAR
<table>
<thead>
<tr>
<th>Re-enlargement after once sac shrinkage</th>
<th>11 cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sac shrinkage after coil</td>
<td>10/11 cases</td>
</tr>
</tbody>
</table>

Diameter change before and after coil embolization

10/11 cases successfully control sac enlargement after coil embolization
Persistent enlargement / large diam	15 cases
Sac shrinkage after coil | 8/15 cases

Diameter change before and after coil embolization

8/15 cases can control sac enlargement after coil embolization. 2 cases needed open conversion.
Summary

Persistent type II EL was associated with high incidence of MAE and additional endovascular procedure.

Coil embolization could control sac enlargement in 90% (10/11) of re-enlargement cases.

However, it was difficult to control sac enlargement in half of persistent (7/15) with enlargement cases.
Conclusion

Careful observation and additional intervention should be considered for persistent type 2 EL. Success rate to control sac enlargement in 70% (18/26) cases.

We should consider about control type II endoleak during index EVAR procedure to improve long-term outcome.
Junichi Tazaki
Department of Cardiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Thank you for your attention!
Long term outcomes of coil embolization for Type II endoleak after EVAR

Department of Cardiovascular Medicine
Graduate School of Medicine Kyoto University
Junichi Tazaki, Hirooki Higami, Kiyonari Nanto,
Osamu Iida, Takeshi Kimura